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The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized
for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex
and dynamic coastal regions.While a body of literature evaluatesmodel skill in surface fields, independent stud-
ies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields
cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature
was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental
Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from
2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures
to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall
comparison betweenmodeled and observed data indicates reliable skill of FVCOM (r2=0.72; rootmean squared
error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than
summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the
exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is im-
proved similarity between modeled and observed data at higher latitudes. We speculate that this is due to in-
creased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing
improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges,
and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints
for future uses of FVCOMbottomwater temperature are provided based on the uncertainties in temporal-spatial
patterns. This study is novel as it is thefirst skill assessment of a regional ocean circulationmodel in bottom fields
at high spatial and temporal scales in the Northwest Atlantic Shelf region.
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1. Introduction

Quantitative ocean circulationmodels have been widely used by the
scientific community to capture past, present and future climate-driven
oceanographic profiles (Blumberg and Mellor, 1987; Stock et al., 2011).
In general, ocean circulationmodels apply fundamental physical laws to
numerically discretize model dynamics in time and three-dimensional
space. While spatial and temporal resolutions of model outputs have
improved considerably, commensuratewith increases in computer pro-
cessing capabilities, modeling uncertainties inherently emerge from
processes of model development and parameterization and complexity
of processes at different scales (Murphy et al., 1998).
The Finite Volume Community Ocean Model (FVCOM) is an ocean
circulation model developed by collaborative efforts between the Uni-
versity ofMassachusetts-Dartmouth and theWoodsHoleOceanograph-
ic Institution (Chen et al., 2006). FVCOM is one of the coremodels of the
Northeast Coastal Ocean Forecast System (NECOFS), andwidely used to
investigate interannual variability of water properties, circulation, and
geophysical conditions from global to estuarine scales (Chen et al.,
2006). Themodel's unstructured-grid featuremakes FVCOMwell suited
for examining the interannual variability in oceanographic and circula-
tion patterns of inshore areas that are often characterized by complex
coastlines and bathymetry. FVCOM has been configured to hindcast,
nowcast, and forecast key ecosystem processes on theNorthwest Atlan-
tic Shelf (NAS; hereafter referred to as FVCOM-NAS) that include major
Large Marine Ecosystems (LMEs) such as Scotian Shelf (SS), Gulf of
Maine (GoM), Georges Bank (GB), and Mid Atlantic Bight (MAB)
(Townsend et al., 2006). As of 2016, the FVCOM-NAS has been integrat-
ed for the time period 1 January 1978 to 31 December 2013, providing
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hourly currents and hydrography information in the NAS region (Chen,
2015).

An increasing number of coupled biophysical models rely on
FVCOM outputs to examine the impact of climate change and
interannual variability on oceanographic conditions (e.g. Huret et
al., 2007; Ji et al., 2008; Tanaka and Chen, 2015, 2016) and to
facilitate the decision-making process for themanagement of marine
resources in the NAS region. Recently, several bioclimate modeling
efforts have been made for commercially important benthic and
groundfish species such as scallops, cod, and American lobster (Ji et
al., 2008; Li et al., 2015a; Tanaka and Chen, 2015, 2016). These
biological and fisheries models are being developed downstream of
NECOFS due to its ability to simulate bottom water constituents out
of the view of remote sensing technology. However, rigorous skill
assessment of FVCOM outputs for key benthic water properties
such as bottom water temperature and salinity remain scarce,
which may result in lack of confidence in coupled biophysical
modeling studies based on the FVCOMoutputs. Such skill assessment
requires comprehensive comparison with observed data collected
within the time and space domain of model integration.

In this study, using in situ hourly bottom temperature data col-
lected throughout the NAS region, we compared observed and
modeled bottom water temperatures to assess the accuracy and reli-
ability of FVCOM. To our knowledge, this study provides the first sys-
tematic examination of the quality of modeled bottom water
temperature from FVCOM-NAS over extensive temporal and spatial
scales and over a large geographic area characterized by steep ther-
mal gradients. Our results provide critical information on the quality
of FVCOM outputs, identify potential issues associated with the
FVCOM-predicted thermal fields, and potentially lead to better use
of the data.

2. Material and methods

2.1. Study area

The NAS (Fig. 1) is a broad region extending N200 km offshore
and supports some of the most productive fisheries in the world
(Townsend et al., 2006; Fernandez et al., 2015). The coastal and
shelf waters throughout the NAS region are strongly influenced by
the large-scale circulation of the Northwest Atlantic Ocean (Loder
et al., 1998), and characterized by a steep latitudinal temperature
gradient (Townsend et al., 2006). The water properties in the region
are also influenced by the supply of fresh water from Arctic outflow
Fig. 1. Spatial domain and node locations (red dot) of the Finite-Volume Community
Ocean Model (FVCOM) configured in the Northwest Atlantic Shelf (NAS) region. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
(Greene and Pershing, 2007). The region receives relatively fresher
water from the southwesterly Labrador Current, the St. Lawrence
River, and local smaller rivers (Townsend et al., 2006). The north-
ward-flowing Gulf Stream brings warm and relatively saltier waters
into the region (Xue et al., 2008). The physical oceanography of the
Northwest Atlantic continental shelf is regulated by dynamics of
the North Atlantic sub-polar and sub-tropical gyres, and the major
current systems such as the Gulf Stream, Labrador Current, and ad-
joining shelf and slope water currents (Townsend et al., 2006;
Townsend et al., 2015). Both Gulf Stream and Labrador Current sys-
tems are key components of the North Atlantic climate system, and
their interannual and inter-decadal variability are linked to the
North Atlantic Oscillation (NAO) (Hurrell, 1995). Bottom water
properties in the NAS vary under the competing influence of warm
and salty Warm Slope Water (8–12 °C and 34.7–35.5) that originates
in North Atlantic Central Water, and cold and relatively fresh Labra-
dor Slope Water (4–8 °C and 34.3–35) that flows southwest
(Townsend et al., 2006). The two slope waters are mixed along the
shelf break under NAO influence and play a vital role in determining
the characteristics of the deep and bottomwater properties in the re-
gion (Greene et al., 2013).

2.2. FVCOM-NAS

FVCOM-NAS is a three-dimensional, unstructured, free surface,
primitive equation model, which solves the governing momentum
and thermodynamic equation through a second order finite-volume
fluxdiscrete scheme (Chen et al., 2006). Its computational capability en-
sures mass conservation on the individual control volumes and entire
computational domain (Chen et al., 2006). The FVCOM employs a
non-overlapping, unstructured triangular grid that incorporates the ad-
vantages of finite-element methods for geometric flexibility and finite-
differencemethods for computational efficiency (Chen et al., 2006). This
makes themodel well suited to simulating geophysical marine environ-
ments characterized by a complex and irregular coast (Chen et al.,
2006).

While the FVCOM-NAS has been configured with three generations
of model grids (G1–3: Chen, 2015), the skill assessment in this study
was conducted with the G3 model grids with 48,450 nodes (Chen,
2015; Fig. 1). The unstructured FVCOM-G3 grid provides horizontal res-
olution ranging from as fine as ~20 m inshore to as coarse as ~10 km at
the open boundary off the continental shelf (Chen et al., 2006). The
FVCOM allows interpolation of missing oceanographic data (e.g. tem-
perature and salinity data) at various temporal and spatial scales,
which is one of its useful features. The FVCOM-NAS domain contains
GoM, SS north to 45.2°N, and the MAB south to 39.1°N (Cowles et al.,
2008; Fig. 1). Hourly bottom temperature data are modeled at 48,451
nodes. The FVCOM-NAS applies vertical grid discretization using a
total of 45 terrain-following sigma layers (Chen et al., 2011). The bottom
boundary layer has a variable thickness depending on given bathymetry
(Chen et al., 2011). The FVCOM-NAS uses the USGS 15-arcsec digital ba-
thymetry data set (Roworth and Signell, 1998) to determine water
depth at each nodewith aminimumdepth of 3m in shallow coastalwa-
ters. The FVCOM-NAS incorporates assimilation of high-resolution sat-
ellite-derived sea surface temperature data and salinity observations
at all surface nodes, as well as temperature fields on the open boundary
(Cowles et al., 2008). The FVCOM-NAS began assimilation of the
eMOLT-derived bottom temperature in 2008 (Manning et al., in
review).

2.3. Environmental Monitors on Lobster Traps (eMOLT)

A collection of observed bottom temperatures provided by the
eMOLT program served as the observational data set. The eMOLT
program began in 2001 through an interdisciplinary-collaborative
effort to monitor the physical environment of the GoM and the



Fig. 3. A schematic of the process used to match predicted and observed data. A
hypothetical square with sides of 0.01 decimal degrees in length was simulated around
an Environmental Monitoring on Lobster Traps (eMOLT) site to identify nearby Finite
Volume Community Ocean Model (FVCOM) nodes.
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Southern New England shelf (Manning and Pelletier, 2009). Using
internally recording temperature probes attached to lobster traps,
the eMOLT provides observed hourly bottom temperature data
from 2001 to 2013 at 201 sites in the NAS region (Fig. 2). The spatial
coverage of these study sites varied over time. The depth of these
study sites varies from 0.2 to 356.6 m. The primary temperature
probes are ONSET TidbiT Water Temperature Data Logger and
Minilog II-T Temperature Data Logger with ±0.2 °C accuracy
(Manning and Pelletier, 2009). The eMOLT provides an ideal array
of bottom water property observations for the initialization, assimi-
lation, and validation demands of ocean circulation models in the
NAS region.

2.4. Pairing modeled and observed bottom temperatures

Modeled bottom water temperatures at hourly temporal
resolution served as the subject of skill assessment in this study.
For comparisons between modeled (FVCOM-NAS) and observed
(eMOLT) bottom temperatures, modeled quantities were matched
to in situ observations at hourly resolution at each eMOLT
instrument location (Fig. 3). The observations with bottom water
temperature b0 °C were excluded from this analysis. First, a
hypothetical square with a side 0.01 decimal degree in length was
simulated around each eMOLT instrument location to identify
nearby FVCOM nodes. Second, an arithmetic mean of modeled
quantities within the hypothetical square was paired with
corresponding eMOLT observation at 1-h temporal resolution. A
total of 2,124,867 pairs of FVCOM-eMOLT quantities were identified
using this approach. The coupled FVCOM-eMOLT quantities were
obtained throughout the FVCOM-NAS domain (Depth 0.2–356.6 m;
Latitude 39.55–44.81°N; Longitude 73.05–63.86°W) over the period
2001–2013, allowing us to assess the skill of FVCOM at various
temporal and spatial scales.

2.5. Statistical and quantitative measures for FVCOM-NAS bottom water
temperature skill assessment

The literature suggests that a number of statistical and quantitative
measures can be used to assess the skill of modeled estimates
(Fitzpatrick, 2009; Stow et al., 2009).

2.5.1. Univariate comparison of predictions and observations
The following six statistical measures were used for the pair-wise

comparison of modeled and observed data (Stow et al., 2009).
Fig. 2. Locations of the Environmental Monitoring on Lobster Traps (eMOLT) sites (n =
201) in the U.S. Northeast Continental Shelf and Nova Scotia, Canada.
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where n is the number of data-model pairs (n=2,124,867); Ei is the ith
eMOLT observation;E represents the average of the observations; Fi rep-
resents the ith FVCOM prediction; and F is the average of the
predictions.

The correlation coefficient (r) of Eq. (1) measures the magnitude of
correlation and dependency between the modeled and observed data
(Stow et al., 2009). The correlation coefficient can vary from −1 to 1,
with negative values indicating an inverse relationship between the ob-
served and predicted values and values close to 1 indicating excellent
agreement.

The average relative error (ARE) of Eq. (2) measures the possible
overall bias of FVCOM-modeled data, and average absolute error
(AAE) and root mean square error (RMSE) of Eqs. (3) and (4) quantify
the overall spatio-temporal bias and variability between predictions



Table 1
Summary of quantitative metrics statistics.

Correlation coefficient (r) 0.85
Average relative error (ARE) 0.04
Average absolute error (ABE) 1.56
Root mean square error (RMSE) 2.28
Reliability index (RI) 1.08
Modeling efficiency (ME) 0.71
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and observations (Fitzpatrick, 2009). Values close to zero for these indi-
ces indicate a close match between modeled and observed data.

The reliability index (RI) quantifies themagnitude of differences be-
tween modeled and observed values in terms of average factors
(Leggett and Williams, 1981). An RI of 2 indicates a model predicts the
corresponding observation within a multiplicative factor of 2 on aver-
age, while RI closer to 1 indicates a better prediction (Stow et al., 2009).

The modeling efficiency (ME) quantifies the accuracy of model pre-
diction relative to the average of the observation (Loague and Green,
1991; Nash and Sutcliffe, 1970). A negative ME or an ME close to zero
indicates that the average of observations is a better predictor than an
individual predictor. A ME near 1 implies close match between predic-
tion and observation.

We also compared predictions and observations by site. We use the
RMSE of bottomwater temperature at each site to provide a spatial pic-
ture of reliability of FVCOM-NAS-modeled bottom water temperature.

2.5.2. Linear regression analysis
A regression analysis is a common statistical approach to comple-

ment the bivariate observed versus predicted comparison plot. A set of
linear regression coefficients such as the coefficient of determination
(r2), slope (α), and intercept (β) obtained by minimizing the sum of
the squares of the differences between modeled and the observed
data can produce several criteria. Estimating α and β can assess how
the bias may change within the observed range (e.g., the magnitude
that α differs from 1) and a potential bias inherent in the predictions
(e.g., changes in discrepancy between β and 0). The r2, similar to r in
Eq. (1), can measure the goodness-of-fit, which can account for the
amount of the variance in the observed data that is explained by the
model (Fitzpatrick, 2009). The following linear regression model was
used to examine the bivariate observed versus predicted plot:

E ¼ αF þ β ð7Þ

where E and F are observations and predictions respectively; α and β
represent the slope coefficient and intercept of the regression model.
Fig. 4. Root mean square error (RMSE) map based on Environmental Monitoring on
Lobster Traps (eMOLT) sites (n = 201).
An α of 1, β of 0, and r2 of 1 imply that FVCOM-NAS has unbiased
model skill.

2.5.3. Taylor diagram
Taylor diagrams have become a common tool in evaluatingmultiple

aspects of the skill of different models (Wu et al., 2013; Miao et al.,
2014). They provide a concise graphical summary of how closely pat-
terns match each other in terms of correlation, centered RMSE, and
standard deviation that represent the magnitude of their variations
(Taylor, 2005). The similarity between modeled and observed bottom
water temperature was summarized using standardized Taylor dia-
grams for four temporal and spatial criteria; month (January–Decem-
ber), year (2001−2013), depth (0.2–356.6 m), and distance offshore
(0.0–2.9 decimal degree). The distance offshore was calculated as the
shortest distance to the coastline from each eMOLT site. Fisher's natural
breaks classification can divide a sequence of numeric values into mul-
tiple classes such that the sum of the squared deviations from the class
means is minimal (Bivand et al., 2013), thus the classification method
was used to divide the depth and distance offshore each into 10 classes
by minimizing the intra-class variance and maximizing the inter-class
variance (Bivand, 2013).

2.5.4. Time series analyses
The temporal similarity between the modeled and observed

bottom water temperature time sequence was analyzed. A dynamic
time warping (DTW) was used to compute the optimal alignment
and subsequent cumulative distance between monthly averages of
modeled and observed temperature time sequences. DTW is a time
series comparison that can account for differences in time shift and
scaling, and allows a non-linear comparison of two temporal
sequences that may vary in frequency (Gu and Jin, 2006). Through
the minimization of the distance between the modeled data and
observed data, DTW can derive the least cumulative distance of the
alignments between the two time sequences (Gu and Jin, 2006).
The dtw R package was used to implement DTW analysis (Giorgino,
2009).

Modeled and observed time sequences ofmonthly bottom tempera-
ture anomalies were also compared to assess howwell the FVCOM-NAS
captures the “true” seasonal trend. Monthly climatological values were
calculated by producingmean bottomwater temperature in each calen-
dar month between 2001 and 2013. Anomalies were calculated by
Fig. 5. The modeled (Finite Volume Community Ocean Model: FVCOM) versus observed
(Environmental Monitoring on Lobster Traps: eMOLT) values. The linear regression for
the model versus predicted value is plotted as a solid line. The dash line represents 1:1
line. The red points represent the potential non-random instrumental biases from
WH02. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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subtracting climatological means from the monthly mean observations.
A positive anomaly indicates that the temperature is warmer than the
monthly average, while a negative anomaly indicates that the tempera-
ture is colder than the monthly average.
2.5.5. Non-parametric regression analysis
A generalized additivemodeling (GAM) approachwas implemented

to evaluatewhether themodel skill of FVCOM-NAS exhibits any system-
atic biases at specific spatial and temporal scales. GAMsblendproperties
of generalized linear models and apply a flexible and automated ap-
proach to capture the nonlinear relationships between predictors and
response variables (Hastie and Tibshirani, 1990). Using a GAM ap-
proach, the absolute error between prediction and observation was
modeled as function of latitude (decimal degree), longitude (decimal
degree), depth (m), distance offshore (decimal degree), year, and
month. The GAM formulationwith the six candidate predictor variables
can be written;

g E yð Þð Þ ¼ α þ∑ p
i¼1 f xið Þ þ ε ð8Þ

where g() denotes the link function that relates the expected value of y,
E(y), to the predictors; α denotes the intercept term; f denotes the non-
parametric cubic spline smooth function; xi denotes the ith predictor
variable; and ε is the residual error term. A GAMwith a Gaussian family
(identity link) was fitted and the proportion of deviance explained was
used to measure how well the GAMs can explain the variance in the
data. The mgcv R package was used to implement GAM analysis
(Wood, 2011).
Fig. 6. Standardized Taylor diagrams for month (top left: January–December), year (top right:
right: 0.00005–2.93 decimal degree). Total 2,220,402 modeled-observed match-ups were
standardized observation. The numbers on each diagram represent corresponding tempora
(angular distance from the x-axis in gray), root mean square error (radial distance from the s
in gray) of predicted temperatures comparing with standardized observations. (For interpre
version of this article.)
3. Results

3.1. Skill assessment metrics and root mean square error (RMSE) map

The selected metrics for FVCOM-NAS skill performance revealed a
high correlation (r = 0.87) and a small overall difference between
modeled and observed data (ARE = 0.04, AAE = 1.56, RMSE = 2.28;
Table 1). The computed values of RI (1.08) and ME (0.71) suggested
that overall, the FVCOM-NAS performed very well (Table 1). The
RMSE at each eMOLT site varied from 0.2 to 10.7 °C. Clusters of large
RMSEs (RMSE N 4) were observed in the area around Cape Cod and at
the edge of continental shelf. The largest RMSE value was observed in
eastern Penobscot Bay (Fig. 4).

3.2. Regression analysis

The regression analysis showed a significant positive relationship
between observed and modeled data, while the slope (α) and intercept
(β) coefficients were significantly different from 1 and 0, respectively
(α=0.81 ,β=1.89,p b 0.05) (Fig. 5). The regression slope indicated
that FVCOM-NAS overestimated low bottom water temperature and
underestimated high bottom temperatures. A series of strong cold
FVCOM outliers was observed at eMOLT temperatures between 15
and 20 °C.

3.3. Taylor diagrams

Taylor diagrams summarized the variance, correlation coefficient,
and RMSE for two spatial (depth and distance offshore) and two tempo-
ral (month and year) factors (Fig. 6). The Taylor diagram for month
showed that the model skill in March yielded the highest correlation
2001–2013), depth bins (bottom left: 0.2–356.6 m), and distance offshore bins (bottom
used to construct each Taylor diagram. The red square on the x-axis represents the

l or spatial bins of modeled data. The position of each number indicates the correlation
tandardized observation in blue), and standard deviation (radial distance from the origin
tation of the references to color in this figure legend, the reader is referred to the web



Fig. 8. Temperature anomalies of modeled (FVCOM: solid line) and observed (eMOLT:
dash line) data from 2001 to 2013. Both trend lines represent monthly averages.
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coefficient and lowest RMSE, while the model skill in July–August and
November–January was characterized by relatively low correlation co-
efficient and high RMSE. However, the model skill in July–August cap-
tured variability similar to the observed data compared to the model
skill in November–January. Overall, the model values across all the
months showed less variability than the observed data.

The Taylor diagram for year indicated that the model skill in 2001
and 2013 yielded lower correlation coefficients and higher RMSEs com-
pared to other years. The modeled data and observed data showed rel-
atively equal variability.

The Taylor diagram for depth showed that the model skill in depths
b111.55m yielded relatively high correlations and low RMSE, while the
model skill in deeper areas indicated lower correlation coefficients and
higher RMSE.

The Taylor diagram for distance offshore showed that themodel skill
in nearshore areas (e.g. b1.11 decimal degree) was characterized with
relatively high correlation coefficient and low RMSE. Furthermore, the
model skill in nearshore areas showed less variability compared to the
observed data.

3.4. Time series analyses

The DTW comparison of two temporal sequences revealed a
strong similarity between the modeled and observed temporal
sequences (Fig. 7). The least cumulative distance curve between
two sequences closely followed the diagonal line, indicating a close
match between the modeled and observed temporal sequences
with similar variability. The modeled and observed monthly temper-
ature anomalies showed similar temporal trends (Fig. 8). The
FVCOM-NAS underestimated the bottom water temperature in the
Fig. 7. A dynamic time warping (DTW) plot showing the least cumulative distance
between observed (eMOLT: blue line) versus modeled (FVCOM: red line) time signals.
The two time signals in the upper left and lower right panels represent monthly
averaged observed and modeled bottom temperature versus monthly time steps. The x-
axis and y-axis for upper left panel and lower right panel represents the time step
(month), and bottom water temperature (°C) respectively. The black solid line
represents the optimal alignments between the FVCOM and eMOLT time signals. A least
cumulative distance curve that is close to the diagonal line (green dash line) indicates a
close match between the two time signals. A cumulative distance curve under and over
the diagonal line indicates that the lags between two time signals. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)
warmest months from 2005 to 2008, while the model overestimated
the bottom water temperature after 2012. Most of FVCOM-NAS
anomalies showed a tendency to underestimate during the colder
months.

3.5. Non-parametric regression analysis

The GAM results revealed that themodel skill of FVCOM-NAS exhib-
ited somebiases in both space and time (Fig. 9). All six candidate predic-
tor variables were found to be statistically significant (p b 0.001), and
the GAM accounted for 36.3% of the total deviance in the original data.
Among years, the lowest and highest absolute errors were found in
2009 and 2013 respectively, while among months, November and July
were associated with the lowest and highest absolute errors
respectively. Absolute error decreased with depth, relatively gradually
from 0 to 150 m, and then more strongly from 250 to 350 m. With
distance from shore, absolute error was highest close to shore,
decreased to a minimum ~1.0° from shore, and then increased again
with continuing distance from shore. The absolute error decreased
from low to high latitudes, most strongly in the southern portion of
the study area (40–41°N), and increased from west to east, most
strongly from the western boundary to ~69°W.

4. Discussion

4.1. Observational uncertainty

The skill assessments presented in this study inherently assume
that the eMOLT data represents the “truth” (i.e. all temperature
probes functioned properly throughout the study area during
2001–2013). However, instances of high variability associated with
observed data as well as obvious outliers indicates potential non-
random instrumental biases (Fig. 5). We identified 3 eMOLT sites
that accounted for N90% of eMOLT – FVCOM-NAS discrepancies
larger than 10 °C (n = 8684).

At both sites AB01 (n = 4103; 42.04°N; 70.13°W; −18.3 m) and
DB01 (n = 2532, 44.11°N; 68.45°W; −16.5 m), the majority of the
discrepancies larger than 10 °C occurred during summer months
(June through September). AB01, located in shallow waters inside
the Cape Cod Bay and operated from September 2001 through
August 2013, recorded median observed and modeled temperatures
of 8.1 °C and 19 °C respectively. AB01 has the most temperature
variability among the all the eMOLT sites (Manning, personal
communication), and constantly showed ~8–10 °C variations within
a single tidal cycle (Appendix A). Capturing such large, high
frequency natural temperature fluctuations was not what FVCOM-
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NAS was designed to simulate. Similarly, FVCOM-NAS consistently
overestimated bottom temperature at DB01, located at the east side
of the entrance to Penobscot Bay and operated between August–Oc-
tober 2004, with median observed and modeled temperatures of 9.9
°C and 22.2 °C respectively (Appendix B). With DB01, we could not
determine whether modeled or observed bottom temperature
reflected the truth more accurately. However, it should be noted
that observed temperatures below 10 °C would be unusual in June–
September in this region. In this way, model residuals are useful di-
agnostic tools for analyzing data and not simply to validate models.

Another seasonal discrepancy larger than 10 °C occurred atWH02
(n = 1429; 41.54°N; 70.67°W; −1.8 m) in December and January
with the median observed and modeled temperatures of 17.3 °C
and 5.1 °C respectively. WH02 is a very shallow site (~1 m) operated
between December 2001 through October 2002, where the eMOLT
probe is potentially affected by exposure and ice during the winter
months (Appendix C). It is likely that the difference between
observed and modeled depth coupled with changing sea level due
to tides contributed to some of those large discrepancies at WH02.
Furthermore, the FVCOM-NAS skill is likely to be limited at such
depths, as the model was not designed to resolve such shallow
regions.

Given the regional oceanographic conditions surrounding these
sites, we consider some of the in situ data with skepticism. However,
these data that accounted for b5% of total sample size, remained in
our final analysis as we could not ascertain whether the temperature
probes malfunctioned or whether very localized processes caused
Fig. 9. Partial effects of spatial and temporal variables in the generalized additive model (GAM
interval is shown as a gray envelope, but is mostly within the width of the solid line. Tick mar
from one panel to the next for display purposes.
these sites to stray so strongly from seasonal norms (Manning, personal
communication).

Finally, therewere a number of undocumented relocations of eMOLT
temperature probes that likely affected the quality of observed data
(Manning and Pelletier, 2009). While such observational uncertainty
cannot be quantified or ignored, it is important to acknowledge that rel-
atively lowmodel skill observed in particular place or time could be due
to potential systematic monitoring inaccuracies. Further skill assess-
ment of bottom temperatures should aim to incorporate potential mea-
surement uncertainties.

4.2. Spatiotemporal variations of FVCOM-NAS model skill

While the overall skill assessment metrics showed a strong correla-
tion between modeled and observed data, the magnitude of model skill
varied over both space and time scales. While the highest RMSE (10.7
°C)was found in eastern Penobscot Bay (Fig.4), the spatial RMSEpattern
showed higher error in lower latitudes such as the area around Cape
Cod around 41–42°N and at the edge of continental shelf around 40°N
(Fig. 4). The GAM analysis and Taylor diagrams, which provided a
more holistic view of spatial variation in model skill, identified lower
model skill in shallower, inshore waters towards lower latitude (Figs.
6 and 9). Increased tidal mixing at higher latitude, which reduces strat-
ification in winter, would have likely resulted in improved model accu-
racy. Overall, the complex tidally mixed coastal current water
properties, highly variable tidal range, coupled with influxes of fresher
waters from rivers (e.g. Penobscot Bay), and abrupt depth changes at
) of absolute error. The solid line represents the smoothed model fit. The 95% confidence
ks on the x-axis indicate where samples occurred. Note that the scale of the y-axis differs



Appendix A. Time series of observed (eMOLT: blue) and modeled (FVCOM: red) bottom
temperatures at site AB01 (2001–2013; n = 36,690; −18.3 m) in the top panel. The
location of site AB01 is shown in the bottom panel.
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the shelf edge have all likely contributed to the systematic spatial vari-
ation in the model skill (Figs. 4, 6, and 9). However, while the FVCOM-
NAS has a sufficient coverage of the NAS region, the majority of the
eMOLT siteswere located in inshorewaters. Consequently,we acknowl-
edge that the skill assessment in offshore waters reflects sparser data
and is thus less confident.

Both the Taylor diagrams and GAM analysis show that model skill
was higher during fall, winter and spring (February–May, and Octo-
ber) and lower during summer (June–September) (Figs. 6 and 9).
During summer, the study region develops strong vertical stratifica-
tion, and many regions (e.g., Scotian Shelf, GoM, and Georges Bank)
develop strong and persistent thermal fronts (Townsend et al.,
2006). Lower model skill associated with summer months likely
reflects increased difficulty in tracking the exact position of the ther-
mocline and frontal zones, both of which are modulated by tides, in-
ternal waves and other high frequency events that may not be
captured fully by the model. Using a data-assimilative high-resolu-
tion re-analysis database may improve FVCOM-NAS skill in captur-
ing spatial-temporal patterns of stratification (Li et al., 2015b).
While boundary conditions are also the sources of uncertainty in
the regional circulation models, FVCOM-NAS has improved its
existing boundary conditions through an open boundary
configuration (Cowles et al., 2008). Future skill assessments for
regional circulation models may incorporate a stochastic simulation
analysis to assess the effect of the boundary conditions.

4.3. Research and management implications

Collection of bottom oceanographic data is often limited by
significant logistical hurdles (e.g., cost, resources, diverse bathyme-
try, large spatial ranges). Scientists and resource managers,
however, often require high spatial and temporal resolution data
and low-cost tools to meet their research and management
objectives. To this end, the FVCOM-NAS has been configured to
provide geophysical properties of the NAS system, including bottom
properties. The FVCOM-NAS was originally commissioned to
support the Massachusetts State Ocean Plan (MEEA, 2014). Its
bottom temperature estimates have been incorporated in many
studies that examine the impact of climatic variability on
economically important demersal and benthic species to facilitate
decision-making for the management of marine resources in the
NAS region (e.g. Li et al., 2015a; Tanaka and Chen, 2015, 2016).
While advanced regional circulation models are increasingly used
to inform effective ecosystem-based management in a highly
complex and variable ocean environment (Stock et al., 2011),
quantifying spatiotemporal variability of model skill is critical to
identify the possible consequences of using the data indiscriminate-
ly. The spatiotemporal skill assessment results presented in this
study provide guidance to stakeholders on how FVCOM-NAS
bottom temperature outputs are best used by highlighting when
and where the model skill is most reliable, or when/where they
should be handled with caution. For example, bottom phenomena
related to large scale oceanographic variability over seasonal cycles
and interannual scales can quite reasonably be analyzed using
FVCOM-NAS, while localized high-frequency dynamics in vertically
stratified summer conditions may be less skillfully handled. Finally,
the multiple spatiotemporal skill assessment criteria presented in
this study can be used as priori criteria before the use of any global
and regional ocean circulation models.

5. Conclusion

Using a series of quantitative methods and a large, unique
database of bottom temperature records, this study provides a
comprehensive skill assessment of FVCOM-NAS bottom
temperature variability. Overall, high correlation and low
discrepancy between modeled and observed data indicate that the
FVCOM-NAS exhibited reliable model skill throughout its
spatiotemporal domain. The observed variability in model skill
addresses the questions regarding the quality of the FVCOM bottom
water estimate at various spatial and temporal scales in the NAS
region. The skill assessment measures used in this study can be
applied to other modeled oceanographic variables to serve broader
interests. This study provides FVCOM users opportunities to
incorporate the spatially-varying magnitude of confidence in the
model outputs.
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Appendix B. Time series of observed (eMOLT: blue) and modeled (FVCOM: red) bottom
temperatures at site DB01 during the period of June–November 2004 (n = 3819;
−16.5 m). The location of site DB01 is shown in the bottom panel.

Appendix C. Time series of observed (eMOLT: blue) and modeled (FVCOM: red) bottom
temperatures at site WH02 (2001–2002; n = 10,491; −1.8 m). The location of site
WH02 is shown in the bottom panel.
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Appendix D
Parametric coefficients and approximate significance of smooth terms obtained by the
generalized additive model containing Year, Month, Depth, Distance Offshore, Latitude,
and Longitude. Of the 13 categorical values for Year and 12 categorical values for Month,
the first category class is considered a baseline and adopts a value of zero
Parametric coefficients
(I
2
2
2
2
2
2
2
2
2
2
2
2
Fe
M
A
M
Ju
Ju
A
Se
O
N

Approximate significance of smooth
terms
Estimate
 Std. error
 p-Value
 edf
 p-Value
ntercept)
 0.108
 0.004
 b0.001
 s(depth)
 3.998
 b0.001

002
 0.091
 0.003
 b0.001
 s(distance offshore)
 3.995
 b0.001

003
 0.113
 0.003
 b0.001
 s(latitude)
 4.004
 b0.001

004
 0.102
 0.003
 b0.001
 s(longitude)
 3.999
 b0.001

005
 0.126
 0.003
 b0.001
 *edf: estimated degree of freedom

006
 0.022
 0.003
 b0.001

007
 0.043
 0.003
 b0.001

008
 −0.054
 0.003
 b0.001

009
 −0.185
 0.003
 b0.001

010
 −0.008
 0.003
 b0.05

011
 0.049
 0.003
 b0.001

012
 −0.046
 0.003
 b0.001

013
 0.324
 0.003
 b0.001

bruary
 −0.121
 0.005
 b0.001

arch
 −0.198
 0.004
 b0.001

pril
 −0.219
 0.004
 b0.001

ay
 −0.129
 0.003
 b0.001

ne
 0.150
 0.003
 b0.001

ly
 0.399
 0.003
 b0.001

ugust
 0.327
 0.003
 b0.001

ptember
 0.037
 0.003
 b0.001

ctober
 −0.430
 0.004
 b0.001

ovember
 −0.559
 0.005
 b0.001

ecember
 −0.227
 0.004
 b0.001
D
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