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► We analyze 21 years of shellfish toxicity data from the Gulf of Maine coast.
► We use cluster analysis to reveal eight archetypical modes of seasonal toxicity.
► Groups of monitoring locations with similar interannual patterns are identified.
► Classification trees relate the patterns within each group to environmental metrics.
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Routine monitoring along the coast of the Gulf of Maine (GoM) reveals shellfish toxicity nearly every summer,
but at varying times, locations, and magnitudes. The responsible toxin is known to be produced by the dinofla-
gellate Alexandrium fundyense, yet there is little apparent association between Alexandrium abundance and shell-
fish toxicity. One possibility is that toxic cells are persistent in offshore areas and variability in shellfish toxicity is
caused not by changes in overall abundance, but rather by variability in transport processes. Measurements of
offshore Alexandrium biomass are scarce, so we bypass cell abundance as an explanatory variable and focus
instead on the relations between shellfish toxicity and concurrent metrics of GoM meteorology, hydrology,
and oceanography.While this yields over two decades (1985–2005) of data representing a variety of interannual
conditions, the toxicity data are gappy in spatial and temporal coverage. We address this through a combination
of parametric curvefitting and hierarchical cluster analysis to reveal eight archetypicalmodes of seasonal toxicity
timing. Groups of locations are then formed that have similar interannual patterns in these archetypes. Finally,
the interannual patterns within each group are related to available environmental metrics using classification
trees. Results indicate that aweak cross-shore sea surface temperature (SST) gradient in the summer is the stron-
gest correlate of shellfish toxicity, likely by signifying a hydrological connection between offshore Alexandrium
populations and near-shore shellfish beds. High cumulative downwelling wind strength early in the season is
revealed as a precursor consistent with this mechanism. Although previous studies suggest that alongshore
transport is important in moving Alexandrium from the eastern to western GoM, alongshore SST gradient is
not an important correlate of toxicity in our study. We conclude by discussing the implications of our results
for designing efficient and effective shellfish monitoring programs along the GoM coast.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Gulf of Maine (GoM) coast (Fig. 1) is plagued by annually
recurring shellfish toxicity caused by the dinoflagellate Alexandrium
fundeyense (Shumway et al., 1988). Filterfeeding shellfish accumulate
the toxin produced by Alexandrium and present a health risk to humans
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in the form of paralytic shellfish poisoning (PSP), a potentially fatal con-
dition (Etheridge, 2010). For this reason, management agencies of
Maine, New Hampshire, and Massachusetts have monitored shellfish
toxicity levels along the GoM coast for 30+ years. Shellfish beds with
toxin levels approaching or exceeding 80 μg toxin/100 g shellfish tissue
are closed to harvesting, often resulting in significant economic losses.
The summer of 2005 was especially severe, resulting in harvesting
closures from the central Maine coast south through Massachusetts, as
well as 40,000 km2 of federal offshore resources (Anderson et al.,
2005a; Jin et al., 2008).

In other coastal systems, relationships have been identified between
Alexandrium abundance and shellfish toxicity. For example, in the Estuary
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Fig. 1. Map of the coastal Gulf of Maine showing relevant landmarks, dominant surface circulation patterns (gray arrows), and positions of shellfish sampling locations for both
Mytilus and Mya.
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and Gulf of St. Lawrence, toxicity of the blue mussel, Mytilus edulis, was
found to correspond geographically with the distribution of Alexandrium
tamarense (Blasco et al., 2003). Additionally, over the four years of avail-
able data, 32% of the variability in the magnitude of toxicity was
accounted for by A. tamarense abundance. In the Puget Sound, shellfish
toxicitywas found to be preceded by an increase in Alexandrium catenella
cells in 71% of cases (Dyhrman et al., 2010). Further, an annual index of
shellfish toxicitywas found to covarywith an index of the Pacific Decadal
Oscillation (PDO) as well as with the number of days per year that sea
surface temperature exceeded 13 °C (Moore et al., 2010). In the GoM,
such clear mechanistic or statistical associations between A. fundeyense
cell abundance or distribution and the timing, location, or magnitude of
coastal shellfish toxicity events have yet to be demonstrated. In part,
this may be due to the relatively few and only recent comprehensive
surveys of Alexandrium cell distribution in the GoM (e.g. Townsend et
al., 2001) and the fact that, in those years of available data, the mean
Alexandrium abundance has been surprisingly stable (McGillicuddy et
al., 2005). This suggests that interannual variation in shellfish toxicity
may be determined not only by the actual abundance of offshore
Alexandrium, but also by the relative effectiveness with which these
populations are delivered to the coastal zone (McGillicuddy et al., 2005,
2011; Stock et al., 2007). This hypothesis is supported by short-term
studies linking episodic transport phenomena and specific algal bloom
or toxicity events in the western GoM (Keafer et al., 2005; Luerssen et
al., 2005; Li et al., 2009; McGillicuddy et al., 2011). Thomas et al. (2010)
compared interannual variability inmean toxicitywithin groups of statis-
tically similar sampling locations to environmental data, showing that
groups in the western GoM tend to be positively correlated with wind
stress and sea surface temperature patterns that indicate onshore trans-
port and coastal downwelling.

In this study, we systematically investigate the ‘persistent abun-
dance and fluctuating transport’ hypothesis of Alexandrium-induced
shellfish toxicity in the GoM by statistically relating 21 contiguous
years of quantitative coastal shellfish toxicity data to concurrent envi-
ronmental metrics that are indicative of GoM surface circulation.
The use of monitoring data collected by state agencies primarily
for the purpose of protecting public health, rather than for testing sci-
entific hypotheses, raises some methodological challenges (Thomas et
al., 2010). Individual locations are sampled neither regularly nor ran-
domly in space and time. Sampling frequency and location have been
adjusted both within any given year and across years in response to
emerging patterns of toxicity. The complexity of the GoM coastline
and the observed patchiness of Alexandrium cell abundance (Crespo et
al., 2011) means that any method of averaging or otherwise combining
observations across space and time cannot be substantiated a priori, but
rather must be based on the results of appropriate statistical analysis.

In previous work, Thomas et al. (2010) addressed the issue of
gappy coverage at individual locations in the shellfish data by using
multivariate clustering to group stations with similar interannual tox-
icity records and forming averages within groups. This methodology
was applied to six succinct metrics of annual toxicity (defined with
reference to the 80 μg toxin/100 g shellfish tissue threshold value):
date of first toxicity, duration of toxicity, magnitude of maximum tox-
icity, total annual toxicity, date of maximum toxicity, and presence/
absence of toxicity. We expand on the results of Thomas et al. (2010)
using an extended data set and a different approach. We fit parametric
curves to all data from each location–year combination. This holistic
characterization provides a portrayal of a year's complete toxicity
pattern at each location. Conceptually, such a characterization also
provides robustness to missing data and changes in sampling patterns
while avoiding sensitivity to any particular toxicity threshold
employed. We then identify archetypical timing patterns of seasonal
toxicity across all years and locations providing additional insights to
those of Thomas et al. (2010) concerning seasonality and the identifica-
tion of anomalous years and locations. These archetypes are next used
to form groups of locations that have similar interannual patterns. The
interannual patterns within each group are then related to interannual
differences in available environmental and oceanographic variables.We
explore beyond the simple bivariate correlations of Thomas et al.
(2010), considering multiple independent variables simultaneously
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and allowing for the possibility of threshold effects and variable interac-
tions. To do this, we use a classification and regression tree (CART)
approach (Breiman et al., 1984). To our knowledge, this is the first ap-
plication of CART, a very flexible and easily interpretable statistical pro-
cedure, to the modeling of shellfish toxicity (see Gannon et al., 2009 for
a recent application of CART modeling to toxic algal blooms and fish
catch). We apply these tools to toxicity data from both blue mussels
(M. edulis) and softshell clams (Mya arenaria) collected by the states
of Maine, New Hampshire and Massachusetts to yield results as widely
applicable as possible to shellfish monitoring programs along the GoM
coast.

2. Description of study area

Toxicity in GoM shellfish has been recorded in eastern Maine loca-
tions since at least 1958, and almost annually along the greater GoM
coast since 1972 (Hurst, 1975). This toxicity has strong seasonality,
being restricted to the summer (Hurst and Yentsch, 1981; Shumway et
al., 1988) and generally occurring earlier west of Penobscot Bay than to
the east (McGillicuddy et al., 2005; Thomas et al., 2010). However, with-
in this overall pattern, there is substantial variability in the timing, dura-
tion and strength of toxicity peaks, even between locations that have
close geographic proximity (Franks and Anderson, 1992; Anderson et
al., 2005a; Bean et al., 2005; Thomas et al., 2010). This makes it difficult
to identify consistent spatial or temporal patterns.

Scientific efforts over the past decade have strongly improved our
understanding of the oceanographic ecology of Alexandrium (Anderson
et al., 2005a, 2012). Cells appear to be broadly present offshore, in distri-
butions linked to circulation patterns (Townsend et al., 2001, 2005).
Growth appears limited by temperature throughout the Gulf in the
early spring and by nutrients in the western Gulf in summer. This
would explain the observed seasonal timing of toxicity: population
growth is generally more rapid in the west early in the summer due to
warmer temperatures, but more rapid in the east later in the summer
due to nutrient limitation in the west. Beyond this seasonal regularity,
a clear linkbetween offshoreAlexandrium cell patterns and coastal shell-
fish toxicity remains elusive. If Alexandrium populations in the open
GoM are the dominant source of coastal toxicity, then shellfish contam-
ination requires two conditions: (i) toxic Alexandrium cells need to be
present in sufficient numbers and (ii) the cells need to come in contact
with shellfish. Thus, the physical transport of cells is a key component to
understanding and anticipating shellfish toxicity.

On a broad scale, surface transport patterns in the GoM are well-
known (Fig. 1). Circulation predominantly consists of a counterclock-
wise gyre, the westward flowing coastal portion of which is referred
to as the Maine Coastal Current (MCC) (Brooks, 1985). This is divided
into a colder, stronger and more persistent Eastern Maine Coastal
Current (EMCC) between the Canadian border and Penobscot Bay
(Fig. 1) and a weaker, more variable and seasonally stratified Western
Maine Coastal Current (WMCC)west of Penobscot Bay. LargeAlexandrium
cyst beds are known to exist in the Bay of Fundy just upstream from the
Maine coast (Martin and White, 1988), and further west off Casco Bay
(Anderson et al., 2005b), both providing possible source populations
for the coastal GoM, delivered annually by the MCC (Townsend et al.,
2001; Anderson et al., 2005c). However, there is significant variability
in the extent of alongshore transport. During summer, a portion of
the EMCC often branches offshore at Penobscot Bay to recirculate
around Jordan Basin (Brooks and Townsend, 1989). The diminished
remainder is then joined by freshwater input from Maine rivers to
form the Western Maine Coastal Current (WMCC) (Churchill et al.,
2005; Pettigrew et al., 2005). The WMCC continues around Wilkinson
basin, toward thewesternMaine shore and the coasts of NewHampshire
andMassachusetts. This implies that the potential for shellfish toxicity in
the western GoMmay be related to the strength of both theWMCC and
the EMCC and their relative connection (Luerssen et al., 2005; Pettigrew
et al., 2005).
The extent of branching of the MCC near Penobscot and the subse-
quent interaction of the WMCC with the western coast itself is
thought to be regulated by a combination of river runoff and wind
stress (Anderson et al., 2005c). Downwelling-favorable conditions
are believed to hold the plume and any toxic cells it contains against
the coast and accelerate it alongshore, spreading the potential for con-
tamination of shellfish beds to the west (Franks and Anderson, 1992).
Upwelling conditions seem to retard progression of the plume, slowing
spread of Alexandrium cells and eventually transporting them offshore
(Keafer et al., 2005).

The basic premises of the above hypotheses have been supported by
episodic data from cruises and moored instrumentation. For example,
Keafer et al. (2005) found that downwelling winds were associated
with Alexandrium bloom formation and increased shellfish toxicity in
1998, while upwelling winds were associated with low near-shore
cell abundance and decreased toxicity in 2000 (Keafer et al., 2005).
Analysis of 13 years of shellfish data collected at 8 locations along the
western Maine coast (Luerssen et al., 2005) suggests a link between
interannual variability in toxicity and differences in the timing and
strength of the temperature front separating the relatively cold EMCC
from the warmer water of the WMCC. However, this relationship was
not supported by the more extensive analysis of Thomas et al. (2010),
although years of increased onshore wind stress and reduced
cross-shore temperature gradients were shown to be those years of
increased coastal toxicity along the western Maine coast.

3. Data and methods

3.1. Shellfish toxicity data

Shellfish toxicity data were received from the Maine Department
of Marine Resources, the Massachusetts Division of Marine Fisheries,
and the New Hampshire Department of Environmental Resources.
This compilation of toxicity records for the 21-year period of 1985
to 2005 has over 90,000 records from 450 different coastal locations
along the GoM coast. At some “primary” locations, sampling occurs
approximately weekly (Bean et al., 2005). However, the nature of
state monitoring programs means that the sampling frequency at
most locations varied over the 21-year period, creating many spatial
and temporal gaps. Toxicity in this record was measured in more
than ten different species of shellfish, but blue mussels (M. edulis)
and softshell clams (M. arenaria), comprise about 60% and 22% of the
records, respectively. To provide the most robust, broad and consistent
time/space coverage possible, we limit our study to these two species,
keeping them separate for statistical analysis.

3.2. Toxicity data curve fitting

To fill gaps in the shellfish toxicity records, we first fit smooth
curves to the data of each location–year combination. Location–year
combinations with fewer than eight individual observations were
discarded. A total of 1347 location–year combinations for Mytilus and
810 forMya (comprising 19,392 and 7990 individualmeasurements, re-
spectively) had sufficient data for curve-fitting.We considered a variety
of three-parameter peak functions, including the Gaussian, Lorentzian,
Logistic, Complementary Error Function, and Laplace, as well as some
with an additional parameter controlling the shape of the peak, includ-
ing the Modified Gaussian, Pearson VII, Triangular, Error Function,
Gaussian–Lorentzian Cross Product, Symmetric Double Sigmoidal, and
Symmetric Double Gaussian. The sum of the squared differences be-
tween the fitted curve and the measured toxicity for each location–
year combination was used as the fitting criterion, and the Gaussian
was thereby found to be the best-fitting functional form. Each location–
year combinationwas allowed to have asmany as two separate Gaussian
peaks, as determined by the Bayesian Information Criterion (Schwarz,
1978).
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3.3. Identifying archetypical seasonal timing patterns

A cluster analysis on all individual location–year combinations
was used to identify archetypical seasonal patterns in the data sets
for each of the two species. To focus on the relative timing of toxicity,
rather than the strongly variable magnitude, toxicity curves were first
normalized by dividing by the peak toxicity for that year and location.
Similarity was based on the sum of the squared differences between
interpolated daily values of the respective normalized seasonal toxicity
curves. We used a hierarchical clustering method, as implemented by
the hclust function in R v2.0 (R Development Core Team, 2011). This
function uses an agglomerative algorithm to cluster objects based on a
specifiedmeasure of dissimilarity.We choseWard'smethod of agglom-
eration (Ward, 1963), in which each object is initially assigned to its
own cluster. The algorithm then proceeds iteratively, at each stage join-
ing the two most similar clusters until there is a single cluster. Dissimi-
larity between two clusters at each step is computed as the increase in
the “error sum of squares” (ESS) that would result from aggregating
two clusters into a single cluster. Ward's method chooses successive
clustering steps so as to minimize the increase in the ESS at each step.

Hierarchical clustering results are conveniently visualized as a
dendrogram, with the length of the branches representing the distance
between adjacent clusters. This provides a graphical basis for choosing
the number of clusters that would result from cutting the dendogram
at a particular height (Langfelder et al., 2007). While a number of met-
rics are available for evaluating the relative merits of different cut
heights, we made a subjective choice to yield a reasonable number of
groups while visually maximizing inter-group differences relative to
intra-group differences. The resulting location–year groupings of
seasonal toxicity patterns are henceforth referred to as T-groups and
denoted with numbers.

3.4. Grouping locations according to interannual patterns

To identify locations with similar interannual variability of seasonal
toxicity, locations were next clustered according to T-group member-
ship patterns across all 21 years. The distance metric used in this case
was the binary dissimilarity of T-group membership between locations
for each year (i.e., T-group membership is compared between any two
locations for each year; if they are different, the distance is 1, else it is
0). To maximize the robustness of our between-location distance mea-
sure, locations with T-group assignments for fewer than 50% (12 out of
21) of the years were discarded.

The dendrogram produced by hclust was cut to define distinct
groups of locations. Again, the number of groups was a subjective
choice, intended to yield neither too many nor too few groups, with
reasonable cohesiveness apparent in each group. These groups reflect
spatial arrangements of locations along the GoM coast with similar
interannual variability in seasonal toxicity patterns and are hence-
forth referred to as S-groups and denoted with capital letters.

3.5. Selection and construction of environmental forcing variables

Relatively few environmental variables that are consistently mea-
sured through each season are available over the full 21 years of
available toxicity data. Satellite-measured sea surface temperature
(SST) data are available from the National Oceanic and Atmospheric
Administration (NOAA) from 1985 to the present. These images were
processed as described by Thomas et al. (2010) to provide metrics of
temperature patterns indicative of surface circulation in theGoM. Briefly,
the maximum alongshore SST gradient (ASST) was extracted from
monthly averaged SST composites as a metric of connectivity through
the frontal region off Penobscot Bay separating the colder water of
EMCC from the warmer water of the WMCC. A high value of the ASST
indicates a strong temperature front and a weak alongshore connection,
while a low value indicates a weak front and a stronger connection. For
the shorter cross-shore transect running offshore from the coast toward
Wilkinson Basin, the cross-shore SST slope (XSST) of monthly averaged
composites was used as an indicator of continuity between near-shore
and off-shore surface water masses. A positive value of the slope indi-
cates colder water near the coast compared to offshore and is indicative
of upwelling and a weaker (or absent) surface connection between
inshore and offshore waters.

NOAA records wind speed and direction hourly at Matinicus Rock
(Fig. 1). On the time scales we investigate here, winds at this location
can be considered to be generally representative of conditions along the
GoM coast. Thewind speed datawere converted tomonthly cumulative
wind stress in upwelling-favorable (UWIND) and downwelling-
favorable (DWIND) directions as described by Thomas et al. (2010).
Monthly cumulative values are used in an attempt to capture the
long-term wind-forcing history.

From west to east, the major freshwater discharges to the GoM
include the Androscoggin, Kennebec, and Penobscot Rivers. The
Penobscot is the largest of the three in terms of both watershed size
and average discharge, and a preliminary analysis showed that the
timing of its discharge is strongly correlated with that of the other
major rivers. Therefore monthly average discharge from the Penobscot
was used as a representativemetric for interannual variability in coastal
freshwater input. Daily discharge data were obtained from the United
States Geological Survey (USGS).

3.6. Model construction

Classification and regression tree (CART) methods were applied to
each S-group of locations to relate the interannual patterns in
T-group membership to the meteorological, hydrologic, and oceano-
graphic forcing variables. CART models consist of dichotomous splits
of predictor variables so as to yield the strongest associations with
the dependent variable. This splitting process continues sequentially
until a specified stopping criterion is met (e.g., a minimum number
of observations that must remain at a node for a further split to be
attempted; a minimum factor by which the lack of fit must be re-
duced by an attempted split; a maximum number of nodes allowed
on any path through the tree).

CART models are represented as (inverted) trees, with all observa-
tions present at the (top) root node. At the point of the first split, the
branch to the left indicates agreement with the revealed dichotomous
condition and the branch to the right indicates disagreement. The
next two splits are then attempted, each conditional on the result of
the first split. When the stopping criterion is met, the most likely
value of the dependent variable is reported at the endpoints, or
leaves, of the final branches. The lengths of the branches are propor-
tional to the amount of variation in the dependent variable accounted
for by the previous split. When the dependent variable belongs to a
category or class (as is the case for our T-groups), the statistical
methods are those of classification and results can be evaluated using
error rates (Breiman et al., 1984). When the dependent variable is con-
tinuous, the statistical methods are those of least-squares regression
and the conditional standard deviations can be evaluated.

CART methods do not require the partitioning variables to follow
any specific type of distribution, nor do they assume linearity in the
relationships (Feldesman, 2002). Partitioning variables can be categor-
ical, interval-valued, continuous, or any combination thereof (Clark and
Pregibon, 1992; Yohannes and Hoddinott, 1999). The sequential nature
of splits captures underlying nonlinear relationships as well as interac-
tions between variables (Breiman et al., 1984). CART methods are also
invariant under monotone transformations of the partitioning variables
(Yohannes and Hoddinott, 1999).

Our CART models are implemented using the R function rpart
(Therneau and Atkinson, 2008). We chose a stopping rule that empir-
ically provided concise and interpretable models that did not seem to
merely reflect noise in the data (Han and Kamber, 2006). Specifically,
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splits were maintained only if they reduced the lack of fit of the model
by at least 0.04/n, where n=the number of locations in the S-group
being modeled. We also limited the overall depth of the trees to
three nodes to avoid having more than eight combinations of condi-
tions, which we expected to be difficult to interpret.

3.7. Model validation

To maximize statistical power, the CART models were developed
using all available data. Therefore, model testing was performed for
each S-group using cross-validation. For each year, a model was fitted
to all other years and then used to generate a prediction for the
excluded year. Predictions consisted of T-group membership and were
evaluated in two ways: (i) with regard to the accuracy of predicting
the particular T-groupmembership and (ii) with regard to the accuracy
of predicting the occurrence of any toxicity in that year (any T-group
other than the one representing non-toxicity). For the former, we
used both the overall predictive accuracy (PA=correct predictions/N,
whereN=the total number of location–year combinations) and amod-
ified version of the Heidke Skill Score (Heidke, 1926) for multinomial
predictions (MHSS=[(correct predictions−expected correct)/(N−
expected correct)]), where the expected number of correct predictions
is the number that would be correct if the most common observed
T-group were predicted for every location–year combination. Thus,
the HSS measures the fractional improvement of the model over a
‘default’ forecast. For the binomial toxicity prediction,we used the prob-
ability of detection (POD=correct positives/(correct positives+false
negatives)), the false alarm ratio (FAR=false positives/(correct
positives+false negatives)), the critical success index (CSI=correct
positives/(correct positives+false positives+false negatives)), also
referred to as the threat score, and the original Heidke Skill Score (in
which the expected number of correct predictions is the number that
would be correct by chance if toxicity were predicted at historical
frequencies).

4. Results

4.1. Archetypical seasonal patterns of toxicity

A Gaussian function allowing for as many as two peaks per year
(Fig. 2) provided a very good overall fit to the toxicity data (overall
R2=0.94, n=27,382). The fitted parameters for each location–year
combination consist of the height of the peak(s), the year-day of the
middle of each peak, and the width of each peak. These parameters
can be used to impute estimated toxicity values for any day of the year
for any location–year combination.
Fig. 2. Representative two-peak Gaussian curve fit to Mytilus data collected in 1990 at
Basin Point, ME. This location–year combination represents one of the 2157 seasonal
toxicity patterns analyzed in this study.
Hierarchical clustering applied to the normalized toxicity curves
of each location–year combination indicates that eight archetypical
patterns (T-groups) are appropriate for both Mytilus and Mya (den-
drograms not shown due to their size). These groups represent com-
mon seasonal patterns across all locations and years for each species.
It is clear from plots of these curves (Figs. 3 and 4) that, depending on
the year and location, toxicity may either: not occur at all (T1), start
early and stay long (T2), start and end early and then occur again
(T3), occur only briefly in early- or late-summer (T4, T6), occur for
prolonged periods in mid-summer (T5), possibly even occurring twice
(T7), or start late in the summer and remain toxic well into autumn
(T8).

4.2. Groups of locations according to interannual patterns

Hierarchical cluster analysis applied to the interannual patterns in
T-group membership of each location suggests that five spatial
S-groups are appropriate for the Mytilus toxicity data (Fig. 5). S-group
A examination of the interannual pattern of T-groups reveals that
these locations exhibit late-season toxicity patterns T6, T7, and T8 in
most years, although in the late 1990s many of these locations experi-
enced either no toxicity (T1) or prolonged mid-season toxicity (T5).
The years 1985, 1987, and 2002–2004 are distinct in S-group A in
experiencing only a single, very late-season toxicity peak (T8) at most
locations.

The locations in Mytilus S-group B are mostly non-toxic (T1),
although in some years locations experienced a single peak of toxicity
(T5 or T6). S-group C consists of locations that experienced early and
mid-season toxicity (T3 and T5) in the late 1980s, 1990, 1993, and
2000, and 2005. Except for these years, the 1990s were mostly non-
toxic (T1) for these locations. The years 1987, 2003, and 2004 stand
out for experiencing toxicity late in the season (T7 and T8).

Mytilus S-groups D and E are fairly similar to one another,
experiencing mostly early-season T-groups T2, T3, and T4. The year
1987 stands out in both groups as having later toxicity (T7 or T8),
while group E also experienced late-season toxicity in 1985 and
2004. In S-group E, the year 2005 is notable in having many locations
with a double-peaked toxicity pattern (T3) that had not occurred to
any significant degree since the early 1990s.

A mapping of theMytilus sampling locations identified by S-group
(Fig. 7, top) shows a strong degree of geographical coherence. The
locations of group A lie exclusively in the far east near the Bay of
Fundy, while those in group B are mostly located around Penobscot
Bay. With the exception of one location to the east and two to the
west, those of group C lie between Penobscot and Casco Bays. The loca-
tions in group D aremostly within Casco Bay, while those of E are also in
Casco Bay as well as further west into New Hampshire.

For the Mya data, cluster analysis suggests that only three groups
of locations are clearly distinguishable at a cut height of 1.5 (Fig. 6).
Mya S-group A is distinct from the other groups by the predominance
of late season toxicity patterns T5 through T8, with the late 1990s
characterized by no toxicity (T1) or mid-season toxicity (T4). The
year 2003 stands out as the only year with very late toxicity group
T8. Mya S-group A has similar interannual variability to Mytilus
S-group A.

The locations inMya S-group B are mostly non-toxic (T1), although
many locations experienced a single peak of toxicity (T4 or T6) in the
same years as Mytilus S-group B. Mya S-group C experienced similar
toxicity patterns in these same years, but also in 1993 through 1995.
These locations experienced unusual double peaks (T3) in 1988, 1991,
and 2005. The years 1987, 2003, and 2004 were unusual in the occur-
rence of very late-season peaks (T7 and T8) in both S-groups B and C.

A map of the Mya sampling locations (Fig. 7, bottom) also reveals
strong geographic coherence. S-group A consists exclusively of loca-
tions near the Bay of Fundy. No other locations east of Penobscot Bay
had sufficient sampling for inclusion in our analysis. Mya S-group B



Fig. 3. Groupings of normalized seasonal toxicity patterns (T-groups) across all location–year combinations for Mytilus. Blue curves represent the first (or only) fitted peak; pink
curves represent the second fitted peak when appropriate; bold black curves represent the average seasonal pattern across all location–year combinations in each T-group.
Group designations and sample size (location–year combinations) are also shown for each T-group.
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locations lie just west of Penobscot Bay and along thewest of Casco Bay.
The locations of group C are on the east side of Casco Bay and further
west along the Maine coast toward New Hampshire.

Averaged within each Mytilus S-group, the date of peak toxicity in
each year shows systematic geographic differences consistent with
previouswork and highlights the interannual patterns (Fig. 8).Western
groups D and E typically exhibit the earliest peaks, with eastern S-group
A peaking approximately a month later. Interannual variation in timing
is largely spatially synchronous among groups C, D, and E, with ‘late’
toxicity years (e.g. 1985, 1987, 2003, 2004) peaking late inmost groups.
There is no obvious long term trend in the timing of peaks, although
2003 stands out with especially late toxicity in most S-groups.
Fig. 4. Groupings of normalized seasonal toxicity patterns (T-groups) across all location–yea
represent the second fitted peak when appropriate; bold black curves represent the averag
nations and sample size (location–year combinations) are also shown for each T-group.
4.3. Relations with environmental forcing variables

Toxicity patterns in the eastern S-groups A and B for both Mytilus
and Mya are of less management interest than the western locations,
because of their historically late and very low toxicity, respectively.
Therefore, we focus our subsequent analysis on S-groups C, D, and E
for Mytilus and S-group C for Mya. Fig. 8 shows significant interannual
variation in the timing of shellfish toxicity within each of these groups.
This temporal variation, as characterized by T-group membership
across years (see Figs. 5 and 6), serves as the response to be explained
by the candidate environmental variables using CART modeling. We
develop a separate CART model for each S-group of locations (Fig. 9),
r combinations forMya. Blue curves represent the first (or only) fitted peak; pink curves
e seasonal pattern across all location–year combinations in each T-group. Group desig-
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1985 8 8 8 8 8 na 8 na na na na na 8 8 8 8 8 1 1 1 7 8 8 na na na na na 8 1 6 1 1 1 1 1 1 1 5 1 1 1 na na 1 6 3 2 3 2 na 6 2 3 7 7 8 8 1 8 na 7 4 1 1 6 8 1
1986 8 6 7 6 na na 8 na na na na na 6 7 3 2 5 3 5 5 5 6 1 na na na 3 5 5 5 5 1 5 3 4 5 5 5 5 2 3 3 5 5 5 5 5 3 4 4 na 4 3 5 5 5 5 3 2 5 na 5 5 5 5 5 5 5
1987 8 7 na 8 na na na na 6 na na 8 8 6 1 1 1 1 1 1 2 1 1 na na na 7 7 8 7 8 na 8 8 5 7 7 7 7 7 7 8 7 8 1 8 7 7 na 8 na 7 3 7 8 8 8 8 1 1 na 8 8 1 8 7 7 7
1988 na na 6 na 7 6 8 na 6 na na na 6 5 3 3 1 3 5 4 6 na na 1 1 na 3 2 2 3 3 3 3 4 3 4 3 3 3 5 3 2 3 5 2 3 5 4 3 3 na 2 4 3 3 3 2 2 2 3 na 2 2 3 3 3 2 3
1989 na 7 3 7 7 6 6 6 6 5 6 6 7 7 5 3 5 5 5 7 6 5 5 1 na 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 3 3 5 5 5 5 3 3 na 5 5 5 5 5 5 5
1990 6 7 6 6 6 6 6 6 6 na 6 6 6 3 3 1 5 5 5 5 1 1 1 1 na 1 5 5 5 5 5 1 5 5 5 5 5 5 5 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 5 5 3 3 2 3 na 3 5 4 5 5 3 3
1991 7 6 6 6 6 6 1 na 6 na 6 6 6 6 5 6 1 1 1 1 1 1 1 6 na 1 2 2 4 5 3 1 1 1 5 3 1 1 4 2 1 2 3 2 3 3 3 2 na 2 2 2 3 3 4 3 3 3 2 4 2 4 4 na 3 3 4 2
1992 7 7 7 na 5 7 1 1 1 1 8 8 8 3 3 2 1 1 1 na 5 1 1 1 1 1 1 3 2 1 3 3 1 1 6 1 1 1 1 1 1 1 2 2 1 1 5 3 na 3 2 2 2 2 2 2 1 na 1 1 1 3 3 1 1 5 1 1
1993 6 6 6 6 6 7 6 6 7 1 1 6 5 6 2 2 1 1 1 1 1 1 1 1 na 1 4 5 5 5 3 1 5 2 4 5 5 1 4 4 4 1 3 4 4 3 3 3 5 4 4 4 2 4 5 5 3 5 4 3 3 5 4 1 3 4 4 4
1994 6 7 6 6 6 6 6 6 6 na 1 6 6 1 4 1 1 1 1 1 1 1 1 1 1 1 5 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 4 na 4 4 4 4 4 5 5 3 3 1 1 2 4 4 4 4 4 4 4
1995 6 6 6 6 5 6 1 6 3 6 1 6 6 3 2 2 1 1 1 1 1 1 1 1 na 1 1 2 2 4 4 na 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 na 2 2 2 2 2 3 5 2 3 2 2 2 2 2 4 2 2 2 2
1996 7 5 5 5 5 6 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 na 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 na 2 2 2 2 1 1 5 1 1 1 1 1 4 1 1 1 1 1 1
1997 6 na 5 5 1 1 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 5 2 4 4 4 4 4 4 4 4 1 4 4 1 1 4 4 1 1 1 1 1
1998 3 na 5 5 1 1 1 1 1 5 5 5 5 5 2 5 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 2 2 2 3 3 2 2 2 2 1 2 3 3 2 5 2 2 1 2
1999 5 na 5 5 5 1 1 1 1 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1
2000 1 na 1 1 1 1 1 1 1 1 1 1 1 8 4 1 4 1 2 1 1 1 1 1 1 1 1 3 4 4 1 1 2 2 2 3 2 1 1 4 2 2 4 2 2 3 2 3 3 3 2 2 2 2 4 4 2 4 2 2 2 2 2 3 2 2 2 2
2001 6 na 6 6 8 5 6 6 6 7 na 6 6 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 2 1 1 4 1 1 1 1 4 4 1 4 1 1 4 1 1 1 1 1 1 1 4 1 1 1 1 1 1
2002 8 8 8 8 1 1 1 1 1 na 1 8 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 4 1 1 1 1 2 2 1 1 1 1 1 3 3 2 2 2 2 3 4 3 1 2 1 1 1 2 1 1 1 4 1 1
2003 8 8 8 8 7 8 8 1 na 8 8 8 8 8 8 8 1 8 1 1 8 1 1 8 1 1 1 8 1 1 1 1 1 8 7 5 4 1 1 1 1 1 4 5 1 1 1 2 2 8 8 8 1 8 4 4 5 4 1 4 4 1 4 1 1 7 1 4
2004 7 8 6 8 7 8 7 7 na 8 8 8 8 8 8 8 1 1 1 1 7 6 8 1 1 1 8 8 4 8 8 3 8 8 7 7 7 7 7 1 1 1 3 2 4 7 7 3 3 3 2 2 2 2 8 8 8 7 1 1 1 4 3 1 4 7 7 7
2005 6 na 3 7 5 5 8 6 na 6 6 6 na 3 3 3 4 6 5 3 6 na 6 1 1 1 3 3 3 3 2 1 5 5 3 5 3 5 3 4 2 3 3 3 na 5 5 3 3 2 4 5 4 2 3 3 3 5 4 4 4 2 4 4 4 3 5 2

A B C D E

Fig. 5. Cluster dendrogram for Mytilus showing grouping of sampling locations (S-groups) according to interannual patterns in T-group occurrence. Lengths of branches represent
the dissimilarity between adjacent clusters. End branches are labeled with location numbers, below which is shown a matrix of T-group membership by location and year. T-group
membership is indicated by numbers corresponding to Fig. 3, as well as shading to visually emphasize patterns across years and locations. Missing values are indicated by ‘na’. The
tree was subjectively cut at a height of 1.5 to yield five groups identified by capital letters.
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the results of which can be read directly from the trees. For example, for
Mytilus S-group C, July cross-shore SST gradient (July.XSST) off western
Maine is the first node in the tree, indicating that it has the strongest
overall association with T-group membership. When this metric is less
than 0.004236 (indicating a relatively strong cross-shore hydrologic
connection), July.XSST again acts as the next dichotomous variable, so
that if July.XSST is less than 0.002614, single-peak group T5 is expected,
otherwise double-peak group T7 is expected. When July.XSST is greater
than 0.004236 (indicating a weaker cross-shore connection), June
downwelling wind (June.DWIND) acts as the next partitioning variable,
with values less negative than−0.2452 (indicating weak downwelling
winds) leading to non-toxic group T1 and greater values implying
double-peak group T3. The trees for the other S-groups of locations
can be interpreted similarly.

While July.XSST was revealed as having the strongest association
with toxicity patterns for all Mytilus S-groups, for Mya S-group C July
upwelling wind (July.UWIND) was empirically selected as the topmost
node. However, July.XSST is also an excellent first partitioning variable
and only marginally worse than July.UWIND. To provide consistency
across all trees, July.XSST was selected for the first node in this tree as
well. Given that both metrics are indicators of July cross-shore connec-
tivity, this substitution does not change the interpretation of results.

Accuracies for each leaf of the trees range from30 to 100%. Accuracies
are typically greater than 50%, except when double-peaked T3 is
expected. This seems to be because either of the two constituting peaks
(T2 and T4) may be absent in any given year or location (Fig. 5). Overall
S-group accuracies are: 64% (Mytilus Group C), 55% (Mytilus Group D),
48% (Mytilus Group E), and 60% (Mya Group C).
4.4. Cross-validation results

The overall model accuracies (MA) for the cross-validation exercises
(Table 1) are similar to those obtained for the CARTmodels fitted to the
full data (Fig. 9), indicating model robustness. The Multinomial Heidke
Skill Score (MHSS) shows that the model yields about a 30% improve-
ment over the default T-groupprediction formost S-groups of locations.
Regarding the binomial (toxicity/no toxicity) cross validation tests, the
model yields high probabilities of detection (POD) and low false alarm
rates (FAR). The critical success index (CSI), which accounts for both
false alarms and missed events, is high for all S-groups. The binomial
Heidke Skill Score (HSS) indicates generally strong improvements
over the number of predictions expected to be correct when simply
using historical frequencies in all groups except Mytilus S-group D.
This group is toxic at nearly all locations and years, giving little room
for improvement over simply predicting ‘toxic’ conditions most of the
time. Overall, the two species of shellfish,Mytilus andMya, do not differ
noticeably in their cross-validation results.

5. Discussion

Fitting parametric curves to the shellfish toxicity data allowed us to
interpolate betweenmeasured dates and thereby estimate peak height,
date of peak, and overall duration of toxicity for every location–year
combination, even when sampling did not coincide with the highest
toxin values. We implicitly assumed in our curve-fitting procedure
that there was no systematic bias toward missing toxicity peaks, a
reasonable assumption given the monitoring objectives of the state
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Fig. 6. Cluster dendrogram for Mya showing grouping of sampling locations (S-groups) according to interannual patterns in T-group occurrence. T-group membership is indicated
by numbers corresponding to Fig. 4. All other notation is the same as in Fig. 5.
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agencies. The high R2 value (0.94) for both species indicates that the
two-peak Gaussian form is sufficient to capture most of the variability
present in the data.

Although our choice of the number of groups arising from the sub-
sequent clustering was somewhat subjective, the resulting eight
groups of toxicity timing (T-groups) for each shellfish species appear
to be well clustered within each group and distinctly different across
groups. Further, no single characteristic is responsible for the assign-
ment of groups. For example, Mytilus groups T4 and T5 have similar
average dates of peak toxicity, but are distinguishable by the width of
their toxicity peaks. Similarly,Mytilus groups T7 and T8have overlapping
peak timing, but T7 consistsmostly of double-peak location–year combi-
nations while those in T8 are mostly single-peaked. These observations
support the utility of our holistic approach to toxicity seasonal assess-
ment based on a concise set of archetypical seasonal patterns for each
species.
5.1. Interspecies comparison

The corresponding T-groups for Mya and Mytilus are similar
(Figs. 3 and 4). However, the toxicity peak tends to occur an average
of two weeks later forMya, and peak toxicity levels tend to be about one
third as high. This is consistentwith a lower ingestion/accumulation rate
and/or higher depuration rate (Bricelj and Shumway, 1998; Duinker et
al., 2007; Vasconcelos, 1995; Cusson et al., 2005) and is also consistent
with the results of other comparative studies (Blasco et al., 2003).
Such results argue against a priori aggregation of the Mya and Mytilus
data, and suggest that Mytilus is a more appropriate sentinel species.

5.2. Geographic coherence

The S-groups of locations with similar interannual patterns
(T-groups) reveal some clear spatial and temporal patterns. Most



Fig. 7. Map showing Mytilus (top) and Mya (bottom) sampling locations grouped according to interannual patterns of seasonal toxicity (S-groups) as identified in Figs. 5 and 6,
respectively.
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notably, locations that group together are generally in close geographic
proximity (Fig. 7), consistent with the results of Thomas et al. (2010)
and supporting their contention that many of the factors that drive tox-
icity patterns are regional. For example, locations in the far eastern part
of the Gulf (S-groups A for both Mytilus and Mya) are subject to lower
temperatures for longer periods of time. This would reduce growth
rates of Alexandrium cells, possibly explaining the predominance of
late-arriving peaks (Fig. 8). The fact that these locations are also close
to known cyst beds in the Bay of Fundy may account for the higher
frequency of toxic years than at most western locations. In contrast,
the S-groups of locations in the western region (C, D, and E) are subject
to warmer and more variable temperature and circulation patterns,
consistent with the generally earlier peaks of toxicity (Fig. 8) and a
more diverse set of T-group patterns (Fig. 5).

The identification of a largely non-toxic group of locations
(S-group B for both species) is consistent with the historical observa-
tion of a ‘PSP-sandwich’ — the phenomenon of much lower or absent
toxicity in the area around Penobscot Bay even when adjacent areas



Fig. 8. Interannual variability in peak toxicity timing for Mytilus S-groups. Points indicate
date (year-day) of seasonal peak toxicity averaged across locations in each S-group, plotted
by year. Missing points indicate years without toxicity. Symbols shown in the legend
are the same as those used in the maps. To conserve space, plots for Mya are not shown.
Temporal patterns for Mya are similar to those for Mytilus.

Table 1
Cross-validation results.

Metric S-group

Mytilus
C

Mytilus
D

Mytilus
E

Mya
C

Multinomial MA 0.64 0.53 0.45 0.54
MHSS 0.32 0.30 0.19 0.33

Binomial POD 0.67 0.97 0.69 0.62
FAR 0.08 0.02 0.15 0.01
CSI 0.64 0.95 0.62 0.56
HSS 0.66 0.16 0.49 0.61
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are toxic (Hurst and Yentsch, 1981; Shumway et al., 1988). This has
been attributed to the role of the Penobscot River in deflecting the
EMCC away from the coast (Townsend et al., 2001). Hydrology may
also influence toxicity patterns of Mytilus group D locations, mostly
within Casco Bay. These locations generally exhibit the earliest toxicity
of our five S-groups (Fig. 8) and are known as local ‘hotspots’. It has
been suggested that this is due to entrainment of Alexandrium cells
delivered from the eastern GOM, rather than the existence of a local
source population (Keafer et al., 2005). By demonstrating a strong cor-
respondence between years of toxicity and the strength of offshore con-
nectivity, our CART model results support this suggestion, as discussed
further below.
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Table 2
Interpretation of classification tree results for Mytilus S-group E.

April FLOW June DWIND July SST T-Groupa Toxicity pattern Possible interpretation

Average (i.e., not high) Average (i.e., not strong) Average (i.e., not low) T1
(T2, T4)

No toxicity
(or a single peak in late May or June)

Typically a weak cross-shore connection
inhibits toxicity

Average (i.e., not high) Strong Average (i.e., not low) T3
(T4)

Double peak in late May and late June
(or a single peak in June)

Strong downwelling wind initiates spring
toxicity

Very high Unspecified Average (i.e., not low) T2
(T3, T4)

Single peak starting in early May
and extending into June (occasionally
followed by a peak in June)

High spring river flow delivers cells early
(occasionally combined with strong
downwelling wind in spring)

Unspecified Unspecified Very low T5
(T3)

Single peak starting in June and
extending into July (occasionally
preceded by a peak in late May)

Strong cross-shore connection extends summer
toxicity (occasionally combined with high flow
and/or a strong downwelling wind in spring)

a T-groups given in parentheses are those most frequently observed to occur when the single T-group provided by the classification tree is incorrect.
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guard against fitting of trees to statistical anomalies. While there were
occasions in which different variables may have been selected at some
nodes without significant loss of accuracy, the consistent appearance
of July.XSST and June.DWIND as dominant partitioning variables across
the four S-groups analyzed indicates the robustness of the results with
respect to these variables.

To better understand the relationships described by the classifica-
tion trees, it is useful to consider the conditions leading to the T-group
indication at each leaf chronologically. For example, Table 2 shows the
partitioning variables for Mytilus S-group E arranged chronologically
as columns, with rows corresponding to the four leaves arranged in
order from the most to the least specific set of necessary identifying
conditions. Consideration of these conditions holistically then facilitates
interpretation of potential mechanisms.

From Table 2, we see that for the ‘average’ year (in terms of the
values of the three key partitioning variables) the classification tree
indicates that the S-group E locations are likely to have no toxicity
(T1). This situation corresponds to 10 of the 21 years in the data record
(Fig. 9). In the years or locations for which the model is incorrect, the
most frequently observed T-groups have been T2 and T4 (Fig. 5). So,
we can conclude that the ‘default’ scenario for S-group E is ‘no toxicity’,
with the lingering possibility of a single peak in late May or June. Per-
haps this is because the average strength of along-shore and/or cross-
shore transport is typically not sufficient to produce shellfish toxicity.

When a year is ‘average’ except for unusually strong downwelling
winds in June (as is the case for 6 of the 21 years), a toxicity peak is
expected for late June. This may either add to the occasional late
May peak (to produce double-peak T3), or occur as the only peak of
the season (T4). When very high streamflow in April is the defining
characteristic of the season (as in 2 of the 21 years), then toxicity is
expected to peak early (T2), possibly followed by the ‘default’ or
wind-generated peak in May/June (as the value of June DWIND is
unspecified at this point in the tree). This may be due to enhanced
alongshore transport caused by freshwater inputs.

Finally, when July cross-shore SST gradient is unusually low, indica-
tive of a strong cross-shore connection, a relatively late and prolonged
peak (T5) is expected. Again, as theother two conditions are unspecified,
the sporadic ‘default’ peak in late May could also occur, producing
double-peaked group T3.

The interpretation of the tree for Mya group C is similar to that of
Mytilus Group E, with the exception that May cross-shore SST gradient
is used to further resolve the assessment in years for which July cross-
shore SST gradient is low. A low gradient in May adds a second, earlier
peak to the anticipated pattern, leading again to double-peaked group
T3.

For Mytilus group D, the tree is rather simple, in that cross-shore
SST gradient is the partitioning variable at all three nodes. Thus the
interpretation is straightforward: average conditions correspond to
a single peak (T2 — expected in 13 of 21 years); a slightly weaker
gradient in July adds a later peak to give double-peaked T3 (5 years);
a relatively strong gradient in July and weak gradient in June limits
toxicity to a June peak (T4 — two years); finally, strong gradients in
both June and July avoid toxicity altogether (T1 — a single year).

Finally, the Mytilus group C tree is similar to that for group D, but
with June downwelling wind replacing June cross-shore SST gradient
and with lower thresholds for July.XSST. This means that years with
average conditions typically avert toxicity (T1 expected in 13 of the
21 years). However, late May peak T2 has also been observed in
these years. Strong downwelling wind in June is then associated with
a June peak (T4 or T5), usually in combination with a May peak to pro-
duce double-peak pattern T3. Yearswith a lower SST gradient in July are
then associated with relatively late and prolonged peak T5, or in the
case of 1987, a rare second peak in late July/early August (T7).

5.4. Alongshore transport

It is notable that alongshore connectivity, characterized by along-
shore SST gradient (ASST), in any of the months does not appear as a
strongly associated variable in any of the classification trees. Consistent
with the results of Thomas et al. (2010), this suggests that the alongshore
link detected by Luerssen et al. (2005)was limited to the 8 locations and
13 years of data used in their study and cannot be extrapolated to amore
extensive dataset. The inability to find a consistent association between
toxicity and alongshore SST gradient, despite the fact that alongshore
transport is thought to be an important mechanism of Alexandrium cell
delivery, has a few possible explanations. If the critical transport time
window between the EMCC and WMCC is in the spring, connectivity
may not be captured well by our satellite-derived metric because SST
gradients early in the year areweak. It is also possible that aweak along-
shore SST gradient may be indicative of an open transport pathway for
Alexandrium, but that this may not havemuch to dowith actual shellfish
toxicity outbreaks. This could be the case if either: (i) the alongshore
transport rate is not a limiting factor in delivering sufficient cells from
the east to potentially cause toxicity, or (ii) there is a western source of
Alexandrium that does not require east–west transport, such as awestern
cyst bed or local cells. Irrespective of the true explanation, the CART
models indicate that our cross-shore, rather than along-shore, metrics
of connectivity are most strongly associated with interannual variability
in the timing of seasonal shellfish toxicity.

6. Conclusions and practical implications

Our holistic characterization of the seasonal cycle and CART models
provide insight into statistical associations between environmental
metrics and shellfish toxicity. High April river flow and strong cross-
shore connectivity in either June or July are each individually sufficient
to anticipate summertime shellfish toxicity somewhere along thewest-
ern Gulf coast. High river flow in April is consistently associated with
spring toxicity at most locations west of Casco Bay, while a weak
cross-shore SST gradient in July is associated with mid-season toxicity
at locationswest of Penobscot Bay. The presence of strong downwelling
winds in June is a telltale sign of a double-peak toxicity pattern at most
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locations outside of Casco Bay. Only when all three of these conditions
are absent can one anticipate a year without significant toxicity any-
where along the coast. Of the 21 years investigated, this coincidence
only occurred once — in 1999. Unfortunately, this means that there
are few early warning signs of toxicity that can be utilized by shellfish
monitoring and management agencies.

Nevertheless, monitoring of some key environmental variables
may help determine when sampling should be intensified in advance
of impending toxicity. For example, at locations belonging to Mytilus
Group E, a high April discharge indicates a high possibility that toxicity
will begin by early May (see Table 1). Otherwise, toxicity should be
expected in late May/early June. If a strong downwelling wind is
observed in June, a second peak of toxicity can then be expected by
the end of the month. Finally, an observation of a low cross-shore SST
gradient in July would then suggest that toxicity is likely to remain
through the month. Similar guidelines can be established for the other
location groups. Such guidelines may help inform decisions to intensify
sampling even whenmeasured toxicity levels are low or, alternately, to
maintain shellfish closures after a toxicity event despite obtaining a
non-toxic sample.

Acknowledgments

Funding was provided by a grant to M.E.B. by the USEPA Office of
Research and Development's Advanced Monitoring Initiative (AMI)
Pilot Projects focused on GEOSS (Global Earth Observation System of
Systems). We thank Ryan Weatherbee for organizing and processing
the data used here as part of grant NA04NOS4780271 to A.C.T. from
the NOAA Coastal Ocean Program. We thank the Maine Department of
Marine Resources, the Massachusetts Division of Marine Fisheries, and
the New Hampshire Department of Environmental Resources for pro-
viding their shellfish toxicity records and for maintaining their ongoing
monitoring programs. This research benefited from discussions with
Dan Lynch, Pasky Pascual, Don Anderson, Dennis McGillicuddy, Keston
Smith, Maureen Taylor, and Jim Manning.

References

Anderson DM, McGillicuddy D, Townsend D, Turner J. Preface: the ecology and oceanog-
raphy of toxic Alexandrium blooms in the Gulf of Maine. Deep Sea Res Part II
2005a;52:2365–8.

Anderson DM, Stock C, Keafer BA, Nelson A, Thompson B, McGillicuddy D, et al.
Alexandrium fundyense cyst dynamics in the Gulf of Maine. Deep Sea Res Part II
2005b;52:2522–42.

Anderson DM, Keafer BA, Geyer WR, Signell RP, Loder TC. Toxic Alexandrium blooms in
the western Gulf of Maine: the plume advection hypothesis revisited. Limnol
Oceanogr 2005c;50:328–45.

Anderson DM, Alpermann TJ, Cembella AD, Colos Y, Masseret E,MontresorM. The globally
distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts
on human health. Harmful Algae 2012;14:10–35.

Bean LL, McGowan JD, Hurst JW. Annual variations of paralytic shellfish poisoning in
Maine, USA 1997–2001. Deep Sea Res Part II 2005;52:2834–42.

Blasco L, Levasseur M, Bonneau E, Gelinas R, Packard TT. Patterns of paralytic shellfish
toxicity in the St. Lawrence region in relationship with the abundance and distri-
bution of Alexandrium tamarense. Sci Mar 2003;67:261–78.

Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Belmont:
Wadsworth International; 1984.

Bricelj V, Shumway SE. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer
kinetics, and biotransformation. Rev Fish Sci 1998;6:315–83.

Brooks DA. Vernal circulation in the Gulf of Maine. J Geophys Res 1985;90:4687–705.
Brooks DA, Townsend DW. Vernal circulation in the Gulf of Maine. J Geophys Res

1989;90:4687–705.
Churchill JH, Pettigrew NR, Signell RP. Structure and variability of the Western Maine

Coastal Current. Deep Sea Res Part II 2005;52:2392–410.
Clark LA, Pregibon D. Tree based models. In: Chambers JM, Hastie TJ, editors. Statistical

models in S. Boca Raton: CRC; 1992. p. 377–420.
Crespo BG, Keafer BA, Ralston DK, Lind H, Farber D, Anderson DM. Dynamics of

Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System
of Cape Cod (Massachusetts, USA). Harmful Algae 2011;12:26–38.
Cusson M, Tremblay R, Daigle G, Roussy M. Modeling of blue mussel (Mytilus spp.)
depuration potential in reaction to thermal shock. Aquaculture 2005;250:183–93.

Duinker A, Bergslien M, Strand Ø, Olseng CD, Svardal A. The effect of size and age on
depuration rates of diarrhetic shellfish toxins (DST) in mussels (Mytilus edulis L.).
Harmful Algae 2007;6:288–300.

Dyhrman ST, Haley ST, Borchert JA, Lona B, Kollars N, Erdner DL. Parallel analyses of
Alexandrium catenella cell concentrations and shellfish toxicity in the Puget
Sound. Appl Environ Microbiol 2010;76:4647–54.

Etheridge SM. Paralytic shellfish poisoning: sea food safety and human health perspec-
tives. Toxicon 2010;56:108–22.

Feldesman MR. Classification trees as an alternative to linear discriminant analysis. Am
J Phys Anthropol 2002;119:257–75.

Franks PJS, Anderson DM. Toxic phytoplankton blooms in the southwestern Gulf of
Maine — testing hypotheses of physical control using historical data. Mar Biol
1992;112:165–74.

Gannon DP, Berens McCabe EJ, Camilleri SA, Gannon JG, Brueggen MK, Barleycorn AA,
Palubok VI, Kirkpatrick GJ, Wells RS. Effects of Karenia brevis harmful algal blooms
on nearshore fish communities in southwest Florida. Mar Ecol Prog Ser 2009;378:
171–86.

Han J, Kamber M. Data mining: concepts and techniques. 2nd ed. San Francisco: Morgan
Kaufmann; 2006.

Heidke P. Berechnung des Erfolges und der Gute der Windstarkevorhersagen in
Sturmwarnungsdienst. Geogr Ann 1926;8:301–49.

Hurst JW. History of paralytic shellfish poisoning on the Maine Coast 1958–1974. In:
LoCicero VR, editor. Proceedings of the First International Conference on Toxic
Dinoflagellate Blooms. Boston: Massachusetts Technology Foundation, Inc.; 1975.
p. 525–8.

Hurst JW, Yentsch CM. Patterns of intoxication of shellfish in the Gulf of Maine coastal
waters. Can J Fish Aquat Sci 1981;38:152–6.

Jin D, Thunberg E, Hoagland P. Economic impact of the 2005 red tide event on commercial
shellfish fisheries in New England. Ocean Coast Manag 2008;51:420–9.

Keafer BA, Churchill JH,McGillicuddyDJ, AndersonDM. Bloomdevelopment and transport
of toxic Alexandrium fundyense populations within a coastal plume in the Gulf of
Maine. Deep Sea Res Part II 2005;52:2674–97.

Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the
Dynamic Tree Cut library for R. Bioinformatics 2007;24(5):719–20.

Li Y, He R, McGillicuddy DJ, Anderson DM, Keafer BA. Investigation of the 2006
Alexandrium fundyense bloom in the Gulf of Maine: in-situ observations and
numerical modeling. Cont Shelf Res 2009;29:2069–82.

Luerssen RM, Thomas AC, Hurst J. Relationships between satellite-measured thermal
features and Alexandrium-imposed toxicity in the Gulf of Maine. Deep Sea Res
Part II 2005;52:2656–73.

Martin JL, White AW. Distribution and abundance of the toxic dinoflagellate Gonyaulax
excavata in the Bay of Fundy. Can J Fish Aquat Sci 1988;45:1968–75.

McGillicuddy DJ, Anderson DM, Solow AR, Townsend DW. Interannual variability of
Alexandrium fundyense abundance and shellfish toxicity in the Gulf of Maine.
Deep Sea Res Part II 2005;52:2843–55.

McGillicuddy DJ, Townsend DW, He R, Keafer BA, Kleindinst JL, Li Y, et al. Suppression
of the 2010 Alexandrium fundyense bloom by changes in physical, biological, and
chemical properties of the Gulf of Maine. Limnol Oceanogr 2011;56:2411–26.

Moore SK, Mantua NJ, Hickey BM, Trainer VL. The relative influences of El
Niño-Southern Oscillation and Pacific Decadal Oscillation on paralytic shellfish
toxin accumulation in Pacific northwest shellfish. Limnol Oceanogr 2010;55:
2262–74.

Pettigrew NR, Churchill JH, Janzen CD, Mangum LJ, Signell RP, Thomas AC, et al. The
kinematic and hydrographic structure of the Gulf of Maine Coastal Current. Deep
Sea Res Part II 2005;52:2369–91.

R Development Core Team. R: a language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing; 2011.

Schwarz GE. Estimating the dimension of a model. Ann Stat 1978;6:461–4.
Shumway SE, Sherman-Caswell S, Hurst JW. Paralytic shellfish poisoning in Maine:

monitoring a monster. J Shellfish Res 1988;7:643–52.
Stock CA, McGillicuddy DJ, Anderson DM, Solow AR, Signell RP. Blooms of the toxic

dinoflagellate Alexandrium fundyense in the western Gulf of Maine in 1993 and
1994: a comparative modeling study. Cont Shelf Res 2007;27:2486–512.

Therneau T, Atkinson B. rpart: recursive partitioning. R package version 3.1–42; 2008
(Available at: http://cran.r-project.org/web/packages/rpart).

Thomas AC, Weatherbee R, Xue H, Liu G. Interannual variability of shellfish toxicity in
the Gulf of Maine: time and space patterns and links to environmental variability.
Harmful Algae 2010;9:458–80.

Townsend DW, Pettigrew NR, Thomas AC. Offshore blooms of the red tide dinoflagellate,
Alexandrium sp., in the Gulf of Maine. Cont Shelf Res 2001;21:347–69.

Townsend DW, Bennett SL, Thomas MA. Diel vertical distributions of the red tide dino-
flagellate Alexandrium fundyense in the Gulf of Maine. Deep-Sea Research II
2005;52:2593–602.

Vasconcelos VM. Uptake and depuration of the heptapeptide toxin microcystin-LR in
Mytilus galloprovincialis. Aquat Toxicol 1995;32:227–37.

Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc
1963;58:236–44.

Yohannes Y, Hoddinott J. Classification and regression trees: an introduction. Technical
Guide #3. Washington, DC: International Food Policy Research Institute; 1999.

http://cran.r-project.org/web/packages/rpart

	Interannual variability in the timing of New England shellfish toxicity and relationships to environmental forcing
	1. Introduction
	2. Description of study area
	3. Data and methods
	3.1. Shellfish toxicity data
	3.2. Toxicity data curve fitting
	3.3. Identifying archetypical seasonal timing patterns
	3.4. Grouping locations according to interannual patterns
	3.5. Selection and construction of environmental forcing variables
	3.6. Model construction
	3.7. Model validation

	4. Results
	4.1. Archetypical seasonal patterns of toxicity
	4.2. Groups of locations according to interannual patterns
	4.3. Relations with environmental forcing variables
	4.4. Cross-validation results

	5. Discussion
	5.1. Interspecies comparison
	5.2. Geographic coherence
	5.3. Timing of environmental forcing
	5.4. Alongshore transport

	6. Conclusions and practical implications
	Acknowledgments
	References


